
Vi har temperaturmätningar av atmosfären som går långt tillbaka i tiden. T ex visar HadCRUT-serien från Hadley/CRU i England globala temperaturer som går tillbaka till 1850 (bild till vänster).
Men uppvärmningen sker inte bara i atmosfären. Den kanske viktigaste uppvärmningen sker i haven, som utgör en c:a 300 gånger större massa än atmosfären. När det gäller uppvärmningen av haven så är tyvärr våra kunskaper betydligt sämre. Innan 1960-talet mättes endast vattnet alldeles vid ytan, t ex med hjälp av hinkar som kastades i och drogs upp från skepp.

Från 1960-talet började man använda engångs batytermografer (Expendable bathythermograph, XBT), som mäter temperaturen som en funktion av djupet. XBTn släpps i havet från ett skepp och överför data genom två trådar medans den sjunker, tills trådarna går av (typiskt vid 700 m). De har dock två problem. Det är svårt att exakt beräkna djupet eftersom detta görs utifrån sjunktiden, och XBTerna kan sjunka olika snabbt under olika omständigheter (t ex temperatur) och beroende på modell. Dessutom är täckningen inte så bra – XBTerna slängs vanligen ut från handelsfartyg och täckningen beror på var dessa fartyg går och inte går.

Från 2004 blev nätverket med Argo-bojar operativt. Argo-bojarna (för närvarande 3236 st över nästan hela världen) mäter regelbundet temperatur och salthalt ner till 2000 meters djup, och har både bättre täckning och pålitlighet än XBTerna. Bojarnas position bestäms med satellit, och deras insamlade data överförs via satellit. Argo-nätverket ger oss därför en betydligt bättre bild av hur temperaturen i haven förändras, och kommer att göra stor nytta i framtiden.
Men för tiden innan 2004 får vi lita på XBTerna, och dessa mätningar har en rad felkällor och är naturligtvis behäftade med en hel del osäkerhet. Olika metoder har utvecklats för att hantera dessa felkällor, och grafen ovan till vänster (från tidskriften Nature) visar hur ett antal olika forskargrupper med olika metoder och data har kommit fram till olika resultat för perioden 1994-2009. Kurvorna visar hur energiinnehållet, representerat som en anomali från ett basvärde, i de översta 700 metrarna av haven förändras under perioden.
I en artikel i tidskriften Nature har John Lyman från University of Hawaii och ett antal andra forskare från andra platser jämfört dessa resultat med avsikt att bedöma osäkerheten i skattningarna (se grafen till höger). De heldragna färgade kurvorna är olika dataserier med samma klimatologi för 1993-2003, de streckade med samma klimatologi för 2005-2008, och de prickade är samma serie med olika korrigeringsmetoder. Av särskilt intresse är den svarta heldragna kurvan som visar genomsnittet av de heldragna och prickade kurvorna. Osäkerhetsintervall är även utsatta för den svarta kurvan. Slutsatsen i artikeln är att trots felkällorna i XBT-dataserierna så är uppvärmningen av haven säkerställd för den aktuella perioden, med en takt på 0.64 ± 0.11 W/m2 (räknat över hela jordytan). För enbart 1993-2003 (dvs innan Argo) är uppvärmningstakten 0.61 ± 0.28 W/m2. Osäkerheten är alltså betydligt större för denna period.
Med andra ord, varje 100 m2 av havsytan får kontinuerligt ta emot ett nettotillskott av energi ungefär motsvarande effekten av en 90W glödlampa (dvs av den gammaldags sorten). Och om det inte låter mycket så bör man tänka på att detta energitillskott ackumuleras hela tiden, sekund för sekund, år efter år.
Det här är också ett exempel på hur forskare konfronteras med osäkerheter - något som händer hela tiden. De försöker förstå dem, korrigera för dem och eliminera dem så mycket det går (bl a genom att titta på flera olika datakällor), och de tar hänsyn till dem när de drar sina slutsatser. Osäkerheter betyder kanske att man vet mindre än om man hade haft perfekt information, men de betyder inte att man ingenting vet.
I en artikel i tidskriften Nature har John Lyman från University of Hawaii och ett antal andra forskare från andra platser jämfört dessa resultat med avsikt att bedöma osäkerheten i skattningarna (se grafen till höger). De heldragna färgade kurvorna är olika dataserier med samma klimatologi för 1993-2003, de streckade med samma klimatologi för 2005-2008, och de prickade är samma serie med olika korrigeringsmetoder. Av särskilt intresse är den svarta heldragna kurvan som visar genomsnittet av de heldragna och prickade kurvorna. Osäkerhetsintervall är även utsatta för den svarta kurvan. Slutsatsen i artikeln är att trots felkällorna i XBT-dataserierna så är uppvärmningen av haven säkerställd för den aktuella perioden, med en takt på 0.64 ± 0.11 W/m2 (räknat över hela jordytan). För enbart 1993-2003 (dvs innan Argo) är uppvärmningstakten 0.61 ± 0.28 W/m2. Osäkerheten är alltså betydligt större för denna period.
Med andra ord, varje 100 m2 av havsytan får kontinuerligt ta emot ett nettotillskott av energi ungefär motsvarande effekten av en 90W glödlampa (dvs av den gammaldags sorten). Och om det inte låter mycket så bör man tänka på att detta energitillskott ackumuleras hela tiden, sekund för sekund, år efter år.
Det här är också ett exempel på hur forskare konfronteras med osäkerheter - något som händer hela tiden. De försöker förstå dem, korrigera för dem och eliminera dem så mycket det går (bl a genom att titta på flera olika datakällor), och de tar hänsyn till dem när de drar sina slutsatser. Osäkerheter betyder kanske att man vet mindre än om man hade haft perfekt information, men de betyder inte att man ingenting vet.